30 research outputs found

    Cochlea-sparing acoustic neuroma treatment with 4Ï€ radiation therapy

    No full text
    Purpose: This study investigates whether 4π noncoplanar radiation therapy can spare the cochleae and consequently potentially improve hearing preservation in patients with acoustic neuroma who are treated with radiation therapy. Methods and materials: Clinical radiation therapy plans for 30 patients with acoustic neuroma were included (14 stereotactic radiation surgery [SRS], 6 stereotactic radiation therapy [SRT], and 10 intensity modulated radiation therapy [IMRT]). The 4π plans were created for each patient with 20 optimal beams selected using a greedy column generation method and subsequently recalculated in Eclipse for comparison. Organ-at-risk (OAR) doses, homogeneity index, conformity, and tumor control probability (TCP) were compared. Normal tissue complication probability (NTCP) was calculated for sensorineural hearing loss (SNHL) at 3 and 5 years posttreatment. The dose for each plan was then escalated to achieve 99.5% TCP. Results: 4π significantly reduced the mean dose to both cochleae by 2.0 Gy (32%) for SRS, 3.2 Gy (29%) for SRT, and 10.0 Gy (32%) for IMRT. The maximum dose to both cochleae was also reduced with 4π by 1.6 Gy (20%), 2.2 Gy (15%), and 7.1 Gy (18%) for SRS, SRT, and IMRT plans, respectively. The reductions in mean/maximum brainstem dose with 4π were also statistically significant. Mean doses to other OARs were reduced by 19% to 56% on average. 4π plans had a similar CN and TCP, with a significantly higher average homogeneity index (0.93 vs 0.92) and significantly lower average NTCP for SNHL at both 3 years (30.8% vs 40.8%) and 5 years (43.3% vs 61.7%). An average dose escalation of approximately 116% of the prescription dose achieved 99.5% TCP, which resulted in 32.6% and 43.4% NTCP for SNHL at 3 years and 46.4% and 64.7% at 5 years for 4π and clinical plans, respectively. Conclusions: Compared with clinical planning methods, optimized 4π radiation therapy enables statistically significant sparing of the cochleae in acoustic neuroma treatment as well as lowering of other OAR doses, potentially reducing the risk of hearing loss

    Treating Glioblastoma Multiforme (GBM) with super hyperfractionated radiation therapy: Implication of temporal dose fractionation optimization including cancer stem cell dynamics.

    No full text
    PurposeA previously developed ordinary differential equation (ODE) that models the dynamic interaction and distinct radiosensitivity between cancer stem cells (CSC) and differentiated cancer cells (DCC) was used to explain the definitive treatment failure in Glioblastoma Multiforme (GBM) for conventionally and hypo-fractionated treatments. In this study, optimization of temporal dose modulation based on the ODE equation is performed to explore the feasibility of improving GBM treatment outcome.MethodsA non-convex optimization problem with the objective of minimizing the total cancer cell number while maintaining the normal tissue biological effective dose (BEDnormal) at 100 Gy, equivalent to the conventional 2 Gy × 30 dosing scheme was formulated. With specified total number of dose fractions and treatment duration, the optimization was performed using a paired simulated annealing algorithm with fractional doses delivered to the CSC and DCC compartments and time intervals between fractions as variables. The recurrence time, defined as the time point at which the total tumor cell number regrows to 2.8×109 cells, was used to evaluate optimization outcome. Optimization was performed for conventional treatment time frames equivalent to currently and historically utilized fractionation schemes, in which limited improvement in recurrence time delay was observed. The efficacy of a super hyperfractionated approach with a prolonged treatment duration of one year was therefore tested, with both fixed regular and optimized variable time intervals between dose fractions corresponding to total number of fractions equivalent to weekly, bi-weekly, and monthly deliveries (n = 53, 27, 13). Optimization corresponding to BEDnormal of 150 Gy was also obtained to evaluate the possibility in further recurrence delay with dose escalation.ResultsFor the super hyperfractionated schedules with dose fraction number equivalent to weekly, bi-weekly, and monthly deliveries, the recurrence time points were found to be 430.5, 423.9, and 413.3 days, respectively, significantly delayed compared with the recurrence time of 250.3 days from conventional fractionation. Results show that optimal outcome was achieved by first delivering infrequent fractions followed by dense once per day fractions in the middle and end of the treatment course, with sparse and low dose treatments in the between. The dose to the CSC compartment was held relatively constant throughout while larger dose fractions to the DCC compartment were observed in the beginning and final fractions that preceded large time intervals. Dose escalation to BEDnormal of 150 Gy was shown capable of further delaying recurrence time to 452 days.ConclusionThe development and utilization of a temporal dose fractionation optimization framework in the context of CSC dynamics have demonstrated that substantial delay in GBM local tumor recurrence could be achieved with a super hyperfractionated treatment approach. Preclinical and clinical studies are needed to validate the efficacy of this novel treatment delivery method
    corecore